Search Weight Loss Topics:




Mar 20

Cardiometabolic health, diet and the gut microbiome: a meta-omics … – Nature.com

Mathers, C. D. & Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, e442 (2006).

Article PubMed PubMed Central Google Scholar

National Academies of Sciences, Engineering, and Medicine et al. in High and Rising Mortality Rates Among Working-Age Adults Ch. 9 (National Academies Press, 2021).

Jagannathan, R., Patel, S. A., Ali, M. K. & Narayan, K. M. V. Global updates on cardiovascular disease mortality trends and attribution of traditional risk factors. Curr. Diab. Rep. 19, 44 (2019).

Article PubMed Google Scholar

Korecka, A. & Arulampalam, V. The gut microbiome: scourge, sentinel or spectator? J. Oral Microbiol. 4, https://doi.org/10.3402/jom.v4i0.9367 (2012).

Tang, W. H. W. & Hazen, S. L. The gut microbiome and its role in cardiovascular diseases. Circulation 135, 10081010 (2017).

Article PubMed Google Scholar

Menni, C. et al. Gut microbial diversity is associated with lower arterial stiffness in women. Eur. Heart J. 39, 23902397 (2018).

Article CAS PubMed PubMed Central Google Scholar

Nogal, A., Valdes, A. M. & Menni, C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 13, 124 (2021).

Article PubMed Google Scholar

Hansen, T. H., Gbel, R. J., Hansen, T. & Pedersen, O. The gut microbiome in cardio-metabolic health. Genome Med. 7, 33 (2015).

Article PubMed PubMed Central Google Scholar

Jardon, K. M., Canfora, E. E., Goossens, G. H. & Blaak, E. E. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut 71, 12141226 (2022).

Article PubMed Google Scholar

Wan, Y. et al. Contribution of diet to gut microbiota and related host cardiometabolic health: dietgut interaction in human health. Gut Microbes 11, 603609 (2020).

Article PubMed PubMed Central Google Scholar

Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99103 (2013).

Article CAS PubMed Google Scholar

Talmor-Barkan, Y. et al. Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat. Med. 28, 295302 (2022).

Article CAS PubMed Google Scholar

Sumida, K. et al. Circulating microbiota in cardiometabolic disease. Front. Cell. Infect. Microbiol. 12, 892232 (2022).

Article CAS PubMed PubMed Central Google Scholar

Brunius, C., Shi, L. & Landberg, R. Metabolomics for improved understanding and prediction of cardiometabolic diseasesrecent findings from human studies. Curr. Nutr. Rep. 4, 348364 (2015).

Article CAS Google Scholar

Johnson, M. Diet and nutrition: implications to cardiometabolic health. J. Cardiol. Cardiovasc. Sci. 3, 49 (2019).

Doran, S. et al. Multi-omics approaches for revealing the complexity of cardiovascular disease. Brief. Bioinformatics 22, bbab061 (2021).

Article PubMed Google Scholar

Joshi, A., Rienks, M., Theofilatos, K. & Mayr, M. Systems biology in cardiovascular disease: a multiomics approach. Nat. Rev. Cardiol. 18, 313330 (2020).

Article PubMed Google Scholar

Abu-Ali, G. S. et al. Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nat. Microbiol. 3, 356366 (2018).

Article CAS PubMed PubMed Central Google Scholar

Schirmer, M. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 3, 337346 (2018).

Article CAS PubMed PubMed Central Google Scholar

Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790795 (2018).

Article CAS PubMed PubMed Central Google Scholar

Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833844 (2017).

Article CAS PubMed Google Scholar

Martinez, K. B., Leone, V. & Chang, E. B. Microbial metabolites in health and disease: navigating the unknown in search of function. J. Biol. Chem. 292, 85538559 (2017).

Article CAS PubMed PubMed Central Google Scholar

Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685688 (2020).

Article CAS PubMed PubMed Central Google Scholar

Shakya, M., Lo, C.-C. & Chain, P. S. G. Advances and challenges in metatranscriptomic analysis. Front. Genet. 10, 904 (2019).

Article CAS PubMed PubMed Central Google Scholar

Valles-Colomer, M. et al. Meta-omics in inflammatory bowel disease research: applications, challenges, and guidelines. J. Chrons Colitis 10, 735746 (2016).

Article Google Scholar

Kleiner, M. Metaproteomics: much more than measuring gene expression in microbial communities. mSystems 4, e00115-19 (2019).

Article PubMed PubMed Central Google Scholar

Roberts, L. D., Souza, A. L., Gerszten, R. E. & Clish, C. B. Targeted metabolomics. Curr. Protoc. Mol. Biol. 98, 30.2.130.2.24 (2012).

Article Google Scholar

Menni, C., Zierer, J., Valdes, A. M. & Spector, T. D. Mixing omics: combining genetics and metabolomics to study rheumatic diseases. Nat. Rev. Rheumatol. 13, 174181 (2017).

Article CAS PubMed Google Scholar

Kule, J. et al. Combined untargeted and targeted metabolomics approaches reveal urinary changes of amino acids and energy metabolism in canine babesiosis with different levels of kidney function. Front. Microbiol. 12, 715701 (2021).

Article PubMed PubMed Central Google Scholar

Hollywood, K., Brison, D. R. & Goodacre, R. Metabolomics: current technologies and future trends. Proteomics 6, 47164723 (2006).

Article CAS PubMed Google Scholar

Linnarsson, S. & Teichmann, S. A. Single-cell genomics: coming of age. Genome Biol. 17, 97 (2016).

Article PubMed PubMed Central Google Scholar

Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649662.e20 (2019).

Article CAS PubMed PubMed Central Google Scholar

Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105114 (2021).

Article CAS PubMed Google Scholar

Llorns-Rico, V., Simcock, J. A., Huys, G. R. B. & Raes, J. Single-cell approaches in human microbiome research. Cell 185, 27252738 (2022).

Article PubMed Google Scholar

Lagier, J.-C. et al. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16, 540550 (2018).

Article CAS PubMed Google Scholar

Van de Wiele, T., Van den Abbeele, P., Ossieur, W., Possemiers, S. & Marzorati, M. in The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models 305317 (Springer International Publishing, 2015).

Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 16161625 (2011).

Article CAS PubMed PubMed Central Google Scholar

Garmaeva, S. et al. Stability of the human gut virome and effect of gluten-free diet. Cell Rep. 35, 109132 (2021).

Article CAS PubMed Google Scholar

Scarpellini, E. et al. The human gut microbiota and virome: potential therapeutic implications. Dig. Liver Dis. 47, 10071012 (2015).

Article PubMed PubMed Central Google Scholar

Warmbrunn, M. V. et al. Gut microbiota: a promising target against cardiometabolic diseases. Expert Rev. Endocrinol. Metab. 15, 1327 (2020).

Article CAS PubMed Google Scholar

Herold, M. et al. Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance. Nat. Commun. 11, 5281 (2020).

Article CAS PubMed PubMed Central Google Scholar

Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560564 (2016).

Article CAS PubMed Google Scholar

Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565569 (2016).

Article CAS PubMed PubMed Central Google Scholar

Fromentin, S. et al. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat. Med. 28, 303314 (2022).

Article CAS PubMed PubMed Central Google Scholar

Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321332 (2021).

Wilmes, P., Heintz-Buschart, A. & Bond, P. L. A decade of metaproteomics: where we stand and what the future holds. Proteomics 15, 34093417 (2015).

Article CAS PubMed PubMed Central Google Scholar

Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655662 (2019).

Article CAS PubMed PubMed Central Google Scholar

Zhou, W. et al. Longitudinal multi-omics of hostmicrobe dynamics in prediabetes. Nature 569, 663671 (2019).

Article CAS PubMed PubMed Central Google Scholar

Zhang, Y. et al. Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature 606, 754760 (2022).

Article CAS PubMed PubMed Central Google Scholar

Oliveira, P. H. Bacterial epigenomics: coming of age. mSystems 6, e0074721 (2021).

Article PubMed Google Scholar

Hiraoka, S. et al. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat. Commun. 10, 159 (2019).

Article PubMed PubMed Central Google Scholar

Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73 (2017).

Article PubMed PubMed Central Google Scholar

Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210215 (2018).

The rest is here:
Cardiometabolic health, diet and the gut microbiome: a meta-omics ... - Nature.com

Related Posts

    Your Full Name

    Your Email

    Your Phone Number

    Select your age (30+ only)

    Select Your US State

    Program Choice

    Confirm over 30 years old

    Yes

    Confirm that you resident in USA

    Yes

    This is a Serious Inquiry

    Yes

    Message:



    matomo tracker