Search Weight Loss Topics:




Mar 20

The microbiome of the marine flatworm Macrostomum lignano … – Nature.com

Lederberg, J. & McCray, A. T. Ome SweetOmicsA genealogical treasury of words. Scientist 15, 88 (2001).

Google Scholar

Collins, S. M., Surette, M. & Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 10, 735 (2012).

Article CAS PubMed Google Scholar

Sommer, F. & Bckhed, F. The gut microbiotamasters of host development and physiology. Nat. Rev. Microbiol. 11, 227 (2013).

Article CAS PubMed Google Scholar

McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 32293236 (2013).

Article CAS PubMed PubMed Central Google Scholar

Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260270 (2012).

Article CAS PubMed PubMed Central Google Scholar

Jackson, M. A. et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 9, 2655 (2018).

Article PubMed PubMed Central Google Scholar

Douglas, A. E. Which experimental systems should we use for human microbiome science. PLoS Biol. 16, e2005245 (2018).

Article PubMed PubMed Central Google Scholar

Darnaud, M. et al. A standardized gnotobiotic mouse model harboring a minimal 15-member mouse gut microbiota recapitulates SOPF/SPF phenotypes. Nat. Commun. 12, 6686 (2021).

Article CAS PubMed PubMed Central Google Scholar

Douglas, A. E. Simple animal models for microbiome research. Nat. Rev. Microbiol. 17, 764775 (2019).

Article CAS PubMed Google Scholar

Ruby, E. G. Symbiotic conversations are revealed under genetic interrogation. Nat. Rev. Microbiol. 6, 752762 (2008).

Article CAS PubMed PubMed Central Google Scholar

Fiebiger, U., Bereswill, S. & Heimesaat, M. M. Dissecting the interplay between intestinal microbiota and host immunity in health and disease: lessons learned from germfree and gnotobiotic animal models. Eur. J. Microbiol. Immunol. 6, 253271 (2016).

Article CAS Google Scholar

Henry, L. P., Bruijning, M., Forsberg, S. K. G. & Ayroles, J. F. The microbiome extends host evolutionary potential. Nat. Commun. 12, 5141 (2021).

Article CAS PubMed PubMed Central Google Scholar

Martino, M. E. et al. Bacterial adaptation to the hosts diet is a key evolutionary force shaping Drosophila-Lactobacillus symbiosis. Cell Host Microbe 24, 109119.e106 (2018).

Article CAS PubMed PubMed Central Google Scholar

Hoang, K. L., Morran, L. T. & Gerardo, N. M. Experimental evolution as an underutilized tool for studying beneficial animal-microbe interactions. Front. Microbiol. 7, 1444 (2016).

Article PubMed PubMed Central Google Scholar

Douglas, A. E. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 1737 (1998).

Article CAS PubMed Google Scholar

Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 3847 (2009).

Article Google Scholar

Hansen, A. K. & Moran, N. A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23, 14731496 (2014).

Article PubMed Google Scholar

Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168180 (2014).

Article CAS PubMed Google Scholar

Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. 19, 666679 (2021).

Article CAS PubMed PubMed Central Google Scholar

Storelli, G. et al. Drosophila perpetuates nutritional mutualism by promoting the fitness of its intestinal symbiont Lactobacillus plantarum. Cell Metab. 27, 362377.e368 (2018).

Article CAS PubMed PubMed Central Google Scholar

Jones, E. W., Carlson, J. M., Sivak, D. A. & Ludington, W. B. Stochastic microbiome assembly depends on context. Proc. Natl Acad. Sci. USA 119, e2115877119 (2022).

Article CAS PubMed PubMed Central Google Scholar

Sieber, M. et al. Neutrality in the Metaorganism. PLoS Biol. 17, e3000298 (2019).

Article PubMed PubMed Central Google Scholar

OBrien, P. A., Webster, N. S., Miller, D. J. & Bourne, D. G. Host-microbe coevolution: applying evidence from model systems to complex marine invertebrate holobionts. mBio 10, e02241 (2019).

Article PubMed PubMed Central Google Scholar

Sogin, E. M., Kleiner, M., Borowski, C., Gruber-Vodicka, H. R. & Dubilier, N. Life in the dark: phylogenetic and physiological diversity of chemosynthetic symbioses. Annu. Rev. Microbiol. 75, 695718 (2021).

Article PubMed Google Scholar

Sogin, E. M., Leisch, N. & Dubilier, N. Chemosynthetic symbioses. Curr. Biol. 30, R1137R1142 (2020).

Article CAS PubMed Google Scholar

Rubin-Blum, M. et al. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. ISME J. 13, 12091225 (2019).

Article CAS PubMed PubMed Central Google Scholar

Engelberts, J. P. et al. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 14, 11001110 (2020).

Article CAS PubMed PubMed Central Google Scholar

Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).

Article CAS PubMed PubMed Central Google Scholar

Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).

Article CAS PubMed PubMed Central Google Scholar

van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557567 (2019).

Article PubMed Google Scholar

Budd, G. E. & Jensen, S. The origin of the animals and a Savannah hypothesis for early bilaterian evolution. Biol. Rev. Camb. Philos. Soc. 92, 446473 (2017).

Article PubMed Google Scholar

Evans, S. D., Hughes, I. V., Gehling, J. G. & Droser, M. L. Discovery of the oldest bilaterian from the Ediacaran of South Australia. Proc. Natl Acad. Sci. USA 117, 78457850 (2020).

Article CAS PubMed PubMed Central Google Scholar

Mouton, S., Wudarski, J., Grudniewska, M. & Berezikov, E. The regenerative flatworm Macrostomum lignano, a model organism with high experimental potential. Int J. Dev. Biol. 62, 551558 (2018).

Article CAS PubMed PubMed Central Google Scholar

Wudarski, J. et al. The free-living flatworm Macrostomum lignano. Evodevo 11, 5 (2020).

Article CAS PubMed PubMed Central Google Scholar

Mouton, S., Grudniewska, M., Glazenburg, L., Guryev, V. & Berezikov, E. Resilience to aging in the regeneration-capable flatworm Macrostomum lignano. Aging Cell 17, e12739 (2018).

Article PubMed PubMed Central Google Scholar

Morris, J. et al. The embryonic development of the flatworm Macrostomum sp. Dev. Genes Evol. 214, 220239 (2004).

Article PubMed Google Scholar

Pfister, D. et al. The exceptional stem cell system of Macrostomum lignano: screening for gene expression and studying cell proliferation by hydroxyurea treatment and irradiation. Front. Zool. 4, 9 (2007).

Article PubMed PubMed Central Google Scholar

Zhou, X. et al. Dual functions of Macpiwi1 in transposon silencing and stem cell maintenance in the flatworm Macrostomum lignano. RNA 21, 18851897 (2015).

Article CAS PubMed PubMed Central Google Scholar

Egger, B., Ladurner, P., Nimeth, K., Gschwentner, R. & Rieger, R. The regeneration capacity of the flatworm Macrostomum lignanoon repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Dev. Genes Evol. 216, 565577 (2006).

Article CAS PubMed PubMed Central Google Scholar

Wasik, K. et al. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano. Proc. Natl Acad. Sci. USA 112, 1246212467 (2015).

Article CAS PubMed PubMed Central Google Scholar

Lengerer, B. et al. Organ specific gene expression in the regenerating tail of Macrostomum lignano. Dev. Biol. 433, 448460 (2018).

Article CAS PubMed Google Scholar

Pfister, D. et al. Flatworm stem cells and the germ line: developmental and evolutionary implications of macvasa expression in Macrostomum lignano. Dev. Biol. 319, 146159 (2008).

Article CAS PubMed Google Scholar

Wudarski, J. et al. Efficient transgenesis and annotated genome sequence of the regenerative flatworm model Macrostomum lignano. Nat. Commun. 8, 2120 (2017).

Article PubMed PubMed Central Google Scholar

Rodrigues, C. J. C. & de Carvalho, C. C. C. R. Cultivating marine bacteria under laboratory conditions: Overcoming the unculturable dogma. Front. Bioeng. Biotechnol. 10, 964589 (2022).

Article PubMed PubMed Central Google Scholar

Marques, A., Ollevier, F., Verstraete, W., Sorgeloos, P. & Bossier, P. Gnotobiotically grown aquatic animals: opportunities to investigate host-microbe interactions. J. Appl. Microbiol. 100, 903918 (2006).

Article CAS PubMed Google Scholar

Mooser, C., Gomez de Aguero, M. & Ganal-Vonarburg, S. C. Standardization in host-microbiota interaction studies: challenges, gnotobiology as a tool, and perspective. Curr. Opin. Microbiol. 44, 5060 (2018).

Article CAS PubMed Google Scholar

Walters, A. W. et al. The microbiota influences the Drosophila melanogaster life history strategy. Mol. Ecol. 29, 639653 (2020).

Article PubMed PubMed Central Google Scholar

Lemoine, M. M., Engl, T. & Kaltenpoth, M. Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 39, 1420 (2020).

Article PubMed Google Scholar

Alfano, N. et al. Changes in Microbiota across developmental stages of Aedes koreicus, an invasive mosquito vector in Europe: indications for microbiota-based control strategies. Front. Microbiol. 10, 2832 (2019).

Article PubMed PubMed Central Google Scholar

Moore, R. E. & Townsend, S. D. Temporal development of the infant gut microbiome. Open Biol. 9, 190128 (2019).

Article CAS PubMed PubMed Central Google Scholar

Read more from the original source:
The microbiome of the marine flatworm Macrostomum lignano ... - Nature.com

Related Posts

    Your Full Name

    Your Email

    Your Phone Number

    Select your age (30+ only)

    Select Your US State

    Program Choice

    Confirm over 30 years old

    Yes

    Confirm that you resident in USA

    Yes

    This is a Serious Inquiry

    Yes

    Message:



    matomo tracker