Search Weight Loss Topics:




Jul 8

Altered mitochondrial microenvironment at the spotlight of musculoskeletal aging and Alzheimer’s disease | Scientific Reports – Nature.com

Cruz-Jentoft, A. J. et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 48(1), 1631 (2019).

PubMed Article Google Scholar

Shafiee, G. et al. Prevalence of sarcopenia in the world: A systematic review and meta-analysis of general population studies. J. Diabetes Metab. Disord. 16(1), 110 (2017).

Article CAS Google Scholar

Callisaya, M. L. et al. Longitudinal relationships between cognitive decline and gait slowing: The Tasmanian Study of Cognition and Gait. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 70(10), 12261232 (2015).

Article Google Scholar

Liu, X. et al. Prevalence of sarcopenia in multi ethnics adults and the association with cognitive impairment: Findings from West-China health and aging trend study. BMC Geriatr. 20(1), 110 (2020).

Article Google Scholar

McGrath, R. et al. The longitudinal associations of handgrip strength and cognitive function in aging Americans. J. Am. Med. Dir. Assoc. 21(5), 634639 (2020).

PubMed Article Google Scholar

Sternng, O. et al. Grip strength and cognitive abilities: Associations in old age. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 71(5), 841848 (2016).

Google Scholar

Yu, J. H. et al. Sarcopenia is associated with decreased gray matter volume in the parietal lobe: A longitudinal cohort study. BMC Geriatr. 21(1), 110 (2021).

CAS Article Google Scholar

Kwon, Y. N. & Yoon, S. S. Sarcopenia: Neurological point of view. J. Bone Metab. 24(2), 8389 (2017).

PubMed PubMed Central Article Google Scholar

Bai, A. et al. Associations of sarcopenia and its defining components with cognitive function in community-dwelling oldest old. BMC Geriatr. 21(1), 111 (2021).

CAS Article Google Scholar

Beeri, M. S., Leugrans, S. E., Delbono, O., Bennett, D. A. & Buchman, A. S. Sarcopenia is associated with incident Alzheimers dementia, mild cognitive impairment, and cognitive decline. J. Am. Geriatr. Soc. 69, 18261835 (2021).

PubMed PubMed Central Article Google Scholar

Ni, H.-J. et al. Effects of exercise programs in older adults with muscle wasting: A systematic review and meta-analysis: Effects of exercise programs in muscle wasting. Arch. Gerontol. Geriatr. 99, 104605 (2022).

PubMed Article Google Scholar

Cartee, G. D., Hepple, R. T., Bamman, M. M. & Zierath, J. R. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 23(6), 10341047 (2016).

CAS PubMed PubMed Central Article Google Scholar

Raleigh, S. M. & Cullen, T. Alzheimers disease, epigenetics, and exercise. In Epigenetics of Exercise and Sports (ed. Raleigh, S. M.) 201216 (Elsevier, 2021).

Chapter Google Scholar

Van Bulck, M., Sierra-Magro, A., Alarcon-Gil, J., Perez-Castillo, A. & Morales-Garcia, J. A. Novel approaches for the treatment of Alzheimers and Parkinsons disease. Int. J. Mol. Sci. 20(3), 719 (2019).

PubMed Central Article CAS Google Scholar

Szeto, J. Y. Y. & Lewis, S. J. G. Current treatment options for Alzheimers disease and Parkinsons disease dementia. Curr. Neuropharmacol. 14(4), 326338 (2016).

CAS PubMed PubMed Central Article Google Scholar

Toro-Domnguez, D. et al. ImaGEO: Integrative gene expression meta-analysis from GEO database. Bioinformatics 35(5), 880882 (2019).

PubMed Article CAS Google Scholar

Barrett, T. et al. NCBI GEO: Archive for functional genomics data setsUpdate. Nucleic Acids Res. 41(D1), D991D995 (2012).

PubMed PubMed Central Article CAS Google Scholar

Szklarczyk, D. et al. STRING v11: Proteinprotein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), D607D613 (2019).

CAS PubMed Article Google Scholar

Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 24982504 (2003).

CAS PubMed PubMed Central Article Google Scholar

Bader, G. D. & Hogue, C. W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4(1), 127 (2003).

Article Google Scholar

Chin, C.-H. et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(4), 17 (2014).

Google Scholar

Raue, U. et al. Transcriptome signature of resistance exercise adaptations: Mixed muscle and fiber type specific profiles in young and old adults. J. Appl. Physiol. 112(10), 16251636 (2012).

CAS PubMed PubMed Central Article Google Scholar

Phillips, B. E. et al. Molecular networks of human muscle adaptation to exercise and age. PLoS Genet. 9(3), e1003389 (2013).

CAS PubMed PubMed Central Article Google Scholar

Timmons, J. A. et al. A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease. Nucleic Acids Res. 46(15), 77727792 (2018).

CAS PubMed PubMed Central Article Google Scholar

Sood, S. et al. A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status. Genome Biol. 16(1), 117 (2015).

Article CAS Google Scholar

Timmons, J. A. et al. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J. Appl. Physiol. 108(6), 14871496 (2010).

CAS PubMed PubMed Central Article Google Scholar

Keller, P. et al. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J. Appl. Physiol. 110, 4659 (2011).

CAS PubMed Article Google Scholar

Dunckley, T. et al. Gene expression correlates of neurofibrillary tangles in Alzheimers disease. Neurobiol. Aging 27(10), 13591371 (2006).

CAS PubMed Article Google Scholar

Liang, W. S. et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol. Genom. 28(3), 311322 (2007).

CAS Article Google Scholar

Liang, W. S. et al. Alzheimers disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. 105(11), 44414446 (2008).

ADS CAS PubMed PubMed Central Article Google Scholar

Readhead, B. et al. Multiscale analysis of independent Alzheimers cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 99(1), 6482 (2018).

CAS PubMed PubMed Central Article Google Scholar

Liang, W. S. et al. Altered neuronal gene expression in brain regions differentially affected by Alzheimers disease: A reference data set. Physiol. Genom. 33(2), 240256 (2008).

CAS Article Google Scholar

Nunez-Iglesias, J., Liu, C.-C., Morgan, T. E., Finch, C. E. & Zhou, X. J. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimers disease cortex reveals altered miRNA regulation. PLoS ONE 5(2), e8898 (2010).

ADS PubMed PubMed Central Article CAS Google Scholar

Blalock, E. M., Buechel, H. M., Popovic, J., Geddes, J. W. & Landfield, P. W. Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimers disease. J. Chem. Neuroanat. 42(2), 118126 (2011).

CAS PubMed PubMed Central Article Google Scholar

Berchtold, N. C. et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc. Natl. Acad. Sci. 105(40), 1560515610 (2008).

ADS CAS PubMed PubMed Central Article Google Scholar

Berchtold, N. C. et al. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimers disease. Neurobiol. Aging 34(6), 16531661 (2013).

CAS PubMed Article Google Scholar

Cribbs, D. H. et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: A microarray study. J. Neuroinflamm. 9(1), 118 (2012).

Article CAS Google Scholar

Astarita, G. et al. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimers disease. PLoS ONE 5(9), e12538 (2010).

ADS PubMed PubMed Central Article CAS Google Scholar

Blair, L. J. et al. Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J. Clin. Investig. 123(10), 41584169 (2013).

CAS PubMed PubMed Central Article Google Scholar

Srvri, M. et al. Menopause leads to elevated expression of macrophage-associated genes in the aging frontal cortex: Rat and human studies identify strikingly similar changes. J. Neuroinflamm. 9(1), 113 (2012).

Article CAS Google Scholar

Wang, M. et al. Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimers disease. Genome Med. 8(1), 121 (2016).

Article Google Scholar

Chae, S. et al. A mitochondrial proteome profile indicative of type 2 diabetes mellitus in skeletal muscles. Exp. Mol. Med. 50(9), 114 (2018).

CAS PubMed Article Google Scholar

Guerrero-Castillo, S. et al. The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab. 25(1), 128139 (2017).

CAS PubMed Article Google Scholar

Guo, X., Park, J. E., Gallart-Palau, X. & Sze, S. K. Oxidative damage to the TCA cycle enzyme MDH1 dysregulates bioenergetic enzymatic activity in the aged murine brain. J. Proteome Res. 19(4), 17061717 (2020).

CAS PubMed Article Google Scholar

Zhang, R., Hou, T., Cheng, H. & Wang, X. NDUFAB1 protects against obesity and insulin resistance by enhancing mitochondrial metabolism. FASEB J. 33(12), 1331013322 (2019).

CAS PubMed PubMed Central Article Google Scholar

Kasper, J. D., Meyer, R. A., Beard, D. A. & Wiseman, R. W. Effects of altered pyruvate dehydrogenase activity on contracting skeletal muscle bioenergetics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 316(1), R76R86 (2019).

CAS PubMed Article Google Scholar

Luo, N. et al. Reduced electron transport chain complex I protein abundance and function in Mfn2-deficient myogenic progenitors lead to oxidative stress and mitochondria swelling. FASEB J. 35(4), e21426 (2021).

CAS PubMed Article Google Scholar

Hou, T. et al. NDUFAB1 confers cardio-protection by enhancing mitochondrial bioenergetics through coordination of respiratory complex and supercomplex assembly. Cell Res. 29(9), 754766 (2019).

CAS PubMed PubMed Central Article Google Scholar

Pereira, C. V. et al. Myopathy reversion in mice after restauration of mitochondrial complex I. EMBO Mol. Med. 12(2), e10674 (2020).

CAS PubMed PubMed Central Article Google Scholar

Wang, Z., Yan, X. & Zhao, C. Dynamical differential networks and modules inferring disrupted genes associated with the progression of Alzheimers disease. Exp. Ther. Med. 14(4), 29692975 (2017).

CAS PubMed PubMed Central Article Google Scholar

More here:
Altered mitochondrial microenvironment at the spotlight of musculoskeletal aging and Alzheimer's disease | Scientific Reports - Nature.com

Related Posts

    Your Full Name

    Your Email

    Your Phone Number

    Select your age (30+ only)

    Select Your US State

    Program Choice

    Confirm over 30 years old

    Yes

    Confirm that you resident in USA

    Yes

    This is a Serious Inquiry

    Yes

    Message:



    matomo tracker