Search Weight Loss Topics:




May 27

Metabolism of l-arabinose converges with virulence regulation to promote enteric pathogen fitness – Nature.com

Caballero-Flores, G., Pickard, J. M. & Nez, G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat. Rev. Microbiol. 21, 347360 (2023).

Article CAS PubMed Google Scholar

Bamler, A. J. & Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535, 8593 (2016).

Article ADS PubMed PubMed Central Google Scholar

Connolly, J. P. R., Brett Finlay, B. & Roe, A. J. From ingestion to colonization: the influence of the host environment on regulation of the LEE encoded type III secretion system in enterohaemorrhagic Escherichia coli. Front. Microbiol. 6, 568 (2015).

Article PubMed PubMed Central Google Scholar

Turner, N. C. A., Connolly, J. P. R. & Roe, A. J. Control freakssignals and cues governing the regulation of virulence in attaching and effacing pathogens. Biochem. Soc. Trans. 47, 229238 (2018).

Article PubMed PubMed Central Google Scholar

Wale, K. R., Cottam, C., Connolly, J. P. & Roe, A. J. Transcriptional and metabolic regulation of EHEC and Citrobacter rodentium pathogenesis. Curr. Opin. Microbiol. 63, 7075 (2021).

Article CAS PubMed Google Scholar

Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123140 (2004).

Article CAS PubMed Google Scholar

Croxen, M. A. & Finlay, B. B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 8, 2638 (2010).

Article CAS PubMed Google Scholar

Moon, H. W., Whipp, S. C., Argenzio, R. A., Levine, M. M. & Giannella, R. A. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect. Immun. 41, 13401351 (1983).

Article CAS PubMed PubMed Central Google Scholar

Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511520 (1997).

Article CAS PubMed Google Scholar

Jerse, A. E., Yu, J., Tall, B. D. & Kaper, J. B. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl Acad. Sci. USA 87, 78397843 (1990).

Article ADS CAS PubMed PubMed Central Google Scholar

Mcdaniel, T. K., Jarvis, K. G., Donnenberg, M. S. & Kaper, J. B. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl Acad. Sci. USA 92, 16641668 (1995).

Article ADS CAS PubMed PubMed Central Google Scholar

Deng, W. et al. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc. Natl Acad. Sci. USA 101, 35973602 (2004).

Article ADS CAS PubMed PubMed Central Google Scholar

Dean, P. & Kenny, B. The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr. Opin. Microbiol. 12, 101109 (2009).

Article CAS PubMed PubMed Central Google Scholar

Tobe, T. et al. An extensive repetoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl Acad. Sci. USA 103, 1494114946 (2006).

Article ADS CAS PubMed PubMed Central Google Scholar

Perna, N. T. et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529533 (2001).

Article ADS CAS PubMed Google Scholar

Wong, A. R. C. et al. Enteropathogenic and enterohaemorrhagic Escherichia coli: Even more subversive elements. Mol. Microbiol. 80, 14201438 (2011).

Article CAS PubMed Google Scholar

Collins, J. W. et al. Citrobacter rodentium: Infection, inflammation and the microbiota. Nat. Rev. Microbiol. 12, 612623 (2014).

Article CAS PubMed Google Scholar

Mullineaux-Sanders, C. et al. Citrobacter rodentiumhostmicrobiota interactions: immunity, bioenergetics and metabolism. Nat. Rev. Microbiol. 17, 701715 (2019).

Article CAS PubMed Google Scholar

Crepin, V. F., Collins, J. W., Habibzay, M. & Frankel, G. Citrobacter rodentium mouse model of bacterial infection. Nat. Protoc. 11, 18511876 (2016).

Article CAS PubMed Google Scholar

Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 13251329 (2012).

Article ADS CAS PubMed PubMed Central Google Scholar

Connolly, J. P. R. et al. Host-associated niche metabolism controls enteric infection through fine-tuning the regulation of type 3 secretion. Nat. Commun. 9, 4187 (2018).

Article ADS PubMed PubMed Central Google Scholar

Njoroge, J. W., Nguyen, Y., Curtis, M. M., Moreira, C. G. & Sperandio, V. Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli. MBio 3, e0028000212 (2012).

Article CAS PubMed PubMed Central Google Scholar

Curtis, M. M. et al. The gut commensal bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe 16, 759769 (2014).

Article CAS PubMed PubMed Central Google Scholar

Menezes-Garcia, Z., Kumar, A., Zhu, W., Winter, S. E. & Sperandio, V. L-Arginine sensing regulates virulence gene expression and disease progression in enteric pathogens. Proc. Natl Acad. Sci. USA 117, 1238712393 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

Connolly, J. P. R. et al. The host metabolite D-serine contributes to bacterial niche specificity through gene selection. ISME J. 9, 10391051 (2015).

Article CAS PubMed Google Scholar

OBoyle, N., Connolly, J. P. R., Tucker, N. P. & Roe, A. J. Genomic plasticity of pathogenic Escherichia coli mediates D-serine tolerance via multiple adaptive mechanisms. Proc. Natl Acad. Sci. USA 117, 2248422493 (2020).

Article ADS PubMed PubMed Central Google Scholar

Conway, T. & Cohen, P. S. Commensal and pathogenic Escherichia coli Metabolism in the gut. Microbiol. Spectr. 3, MBP-0006-2014 (2015).

Article Google Scholar

Fabich, A. J. et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 76, 11431152 (2008).

Article CAS PubMed PubMed Central Google Scholar

Crozier, L. et al. The role of l-arabinose metabolism for Escherichia coli o157:H7 in edible plants. Microbiology 167, 112 (2021).

Article Google Scholar

Mayer, C. & Boos, W. Hexose/pentose and hexitol/pentitol metabolism. EcoSal Plus https://doi.org/10.1128/ecosalplus.3.4.1 (2005).

John, M. et al. Use of in vivo-induced antigen technology for identification of Escherichia coli O157:H7 proteins expressed during human infection. Infect. Immun. 73, 26652679 (2005).

Article CAS PubMed PubMed Central Google Scholar

Segura, A. et al. Transcriptomic analysis reveals specific metabolic pathways of enterohemorrhagic Escherichia coli O157:H7 in bovine digestive contents. BMC Genom. 19, 766 (2018).

Article Google Scholar

Rice, A. J., Park, A. & Pinkett, H. W. Diversity in ABC transporters: type I, II and III importers. Crit. Rev. Biochem. Mol. Biol. 49, 426437 (2014).

Article CAS PubMed PubMed Central Google Scholar

Drousiotis, K. et al. Characterization of the l-arabinofuranose-specific GafABCD ABC transporter essential for l-arabinose-dependent growth of the lignocellulose-degrading bacterium Shewanella sp. ANA-3. Microbiology 169, 3 (2023).

Article Google Scholar

Zschiedrich, C. P., Keidel, V. & Szurmant, H. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 428, 37523775 (2016).

Article CAS PubMed PubMed Central Google Scholar

Schleif, R. AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiol. Rev. 34, 779796 (2010).

Article CAS PubMed Google Scholar

Mullineaux-Sanders, C. et al. Citrobacter rodentium relies on commensals for colonization of the colonic mucosa. Cell Rep. 21, 33813389 (2017).

Article CAS PubMed PubMed Central Google Scholar

Carlson-Banning, K. M. & Sperandio, V. Catabolite and oxygen regulation of enterohemorrhagic Escherichia coli virulence. MBio 7, e0185216 (2016).

Article CAS PubMed PubMed Central Google Scholar

Freter, R., Brickner, H., Fekete, J., Vickerman, M. M. & Carey, K. E. Survival and implantation of Escherichia coli in the intestinal tract. Infect. Immun. 39, 686703 (1983).

Article CAS PubMed PubMed Central Google Scholar

Yip, A. Y. G. et al. Antibiotics promote intestinal growth of carbapenem-resistant Enterobacteriaceae by enriching nutrients and depleting microbial metabolites. Nat. Commun. 14, 5094 (2023).

Article ADS CAS PubMed PubMed Central Google Scholar

Liu, B. et al. Enterohaemorrhagic E. coli utilizes host- and microbiota-derived L-malate as a signaling molecule for intestinal colonization. Nat. Commun. 14, 7227 (2023).

Article ADS CAS PubMed PubMed Central Google Scholar

Schutte, J. B., de Jong, J., van Weerden, E. J. & Tamminga, S. Nutritional implications of l -arabinose in pigs. Br. J. Nutr. 68, 195207 (1992).

Article CAS PubMed Google Scholar

Schwalm, N. D., Townsend, G. E. & Groisman, E. A. Multiple signals govern utilization of a polysaccharide in the gut bacterium bacteroides thetaiotaomicron. MBio https://doi.org/10.1128/mbio.01342-16 (2016).

Pereira, G. V. et al. Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nat. Commun. 12, 459 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).

Article CAS PubMed PubMed Central Google Scholar

Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).

Article ADS CAS PubMed Google Scholar

Kyle, J. L., Parker, C. T., Goudeau, D. & Brandl, M. T. Transcriptome analysis of escherichia coli O157:H7 exposed to lysates of lettuce leaves. Appl. Environ. Microbiol. 76, 13751387 (2010).

Article ADS CAS PubMed PubMed Central Google Scholar

Petty, N. K. et al. The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. J. Bacteriol. 192, 525538 (2010).

Article CAS PubMed Google Scholar

Harper, L. et al. Staphylococcus aureus responds to the central metabolite pyruvate to regulate virulence. MBio https://doi.org/10.1128/mbio.02272-17 (2018).

Jiang, L. et al. Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence. Nat. Commun. 12, 879 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Wiebe, M. A. et al. Serine deamination is a new acid tolerance mechanism observed in uropathogenic Escherichia coli. MBio 13, e02963-22 (2022).

Article PubMed PubMed Central Google Scholar

Ruddle, S. J., Massis, L. M., Cutter, A. C. & Monack, D. M. Salmonella-liberated dietary L-arabinose promotes expansion in superspreaders. Cell Host Microbe 31, 405417.e5 (2023).

The rest is here:
Metabolism of l-arabinose converges with virulence regulation to promote enteric pathogen fitness - Nature.com

Related Posts

    Your Full Name

    Your Email

    Your Phone Number

    Select your age (30+ only)

    Select Your US State

    Program Choice

    Confirm over 30 years old

    Yes

    Confirm that you resident in USA

    Yes

    This is a Serious Inquiry

    Yes

    Message:



    matomo tracker